EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 3 General Relativity 25 Sep. 2024

3.1 (a) Let (Vi,mq) and (V3,ms) be two inner product spaces (i.e. m; : V; x V; — R is symmetric and
bilinear, but we do not assume that it is non-degenerate). Prove that there exists a unique
inner product m = m; ® ms on V; ® V5 with the property that

m(X: ® X5, Y1 @Ys) = mqi(Xq, Y1) - ma(Xs, Ya).

(b) Let (V,m) be an inner product space with a non-degenerate inner product m. Prove that m
can be extended to a unique non-degenerate inner product on the space of tensors of type (k, ¢)
over V (i.e. the space ®"V &' V*) by the conditions that:

L m(fi @ fo, 1 @ g2) = m(f1,01) - m(f2, 92) for any fi,g; € @MV &% V*, i = 1,2, with
ki+ ko =k, by + Ly =1,
2. m(X,,Y,) =m(X,Y), where, for any X € V, we define X, € V* by X, = m(X,-).

What are the components of this extension of m with respect to a basis of ®*V ®@‘V* associated
to a basis {e, }4m of V?

(c) Let (V,m) be as in part (b). Prove that the extension of m to ®*V ®° V* is positive definite if
m is positive definite. Is the analogous statement true if m is a Lorentzian inner product?

Solution. (a) The existence of such an inner product m on V; ® V5 follows easily by fixing bases for
Vi and Viy: Tf {e,}9™ and { fg}dlmv2 are bases (not necessarily orthonormal) for the vector spaces

Vi and V5 respectlvely, and {e? ilmlvl and {fﬁ}dlmv2 are the corresponding dual bases for V}* and

V5, respectively (i.e. e?(ey) = 6% and similarly for f7, fs), one can easily check that the tensors
{€a @ fs}ap form a basis for Vi @ Vo: Any Z € V} ® V, (viewed as a bilinear map Z : Vi* x V' = R
can be uniquely expressed as

Z=Z(e, [)ea ® f5 = 2% @ f5
by noting that, for any v* = v’ed € V" and w* = w;ff e Vy,
Z(v*w*) = Z(vsed, wi f7) = Z(e2, fviwy = Z(e, fL)ea ® f(v*, w).
With such bases fixed, let us define the inner product m on V; ® V5 defined by
m(Z,W) = m(Zo"ﬁea ® fa, W ep @ f@/) = Zo‘ﬁWalﬁlml(ea,ea/)mg(fg, for)

(it is straightforward to check that m defined as above is symmetric and bilinear). Note that m
satisfies the required property: For any X;,Y; € V] and X5, Y, € Vi
m(X1® Xy, Y1 @) = m(X{Xgea ® f5, ViV ear @ f)
= XP XYYy mu(ea, ea)ma(f5, fo)
= mi(XTeq, Ylalea’>m2(X2ﬁf57 YQB fe)
= my (X1, Y1)ma(Xs, Y2).
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On the other hand, the uniqueness of m can be readily shown as follows: Let m be another symmetric
bilinear form satisfying

Mm(X10Xs, Y1®Ys) = mi (X1, Y1)ma(Xa, Ys) = m(X10X,, Y1®Y,) forall XY € V) and Xo, Y, € Vs
and let us consider the difference M = m — m. Then, the symmetric bilinear form M satisfies

M(eq ® f5,e0 @ fgr) = mi(ea,ea)ma(fs, far) — mi(€a, ear)ma(fs, f3r) =0

for all «, o/, 3, 5'; thus, since every element in V; ® V5, can be written as a linear combination of
tensors of the form e, ® fg, we infer that M = 0.

(b) We will first show that the two conditions indeed fix a unique symmetric bilinear form m on
®FV @' V* for any k,l > 0. Arguing inductively on successive tensor products using part (a) of this
exercise, it suffices to show that a unique such m is fixed for £ = 0,1l = 1, i.e. for VV*, by the condition
that

m(X,,Y,) =m(X,Y) forall XY € V. (1)

Note that, since m is assumed to be non-degenerate, for any w € V* there exists a unique w* € V
such that w = m(wt, ), i.e. w = (w#),. Thus, if we extend m on V* by

m(wn,wz) = m(wf,wh)
(note that the above expression is manifestly symmetric and bilinear in wy,ws), then (1) is satisfied.
As in part (a), let {e, 3™V be a basis of V and {e2}4mV be the corresponding dual basis of V*.
Let us denote with mas = m(eq, €s) the components of m with respect to the basis {e,}3m" of V
and with m®® = m(e?, e?) the corresponding components of m with respect to the basis {e¢}4mV of
V. Then, the musical isomorphism X — X, = m(X,-) takes the form

(Xb)oz = maﬁXﬁa
which implies in particular (in view of the fact that (e, )? = §°)

((ew)b)a = Mra.

Our condition m(X,,Y;) = m(X,Y) for the extension of m to V* then yields for any e,, eg:

m((ea)s: (€5)s) = m(eases) & M (€a)s)y, (€8)h)s = Mag & M *Moamss = Mag,

i.e. the matrix [m®’] is the inverse of [mas]. In particular, m is a non-degenerate inner product on
V* (since its matrix of coefficients is invertible).

Arguing inductively using part (a), we infer that m admits a unique extension with the required
property on ®*V @' V* for any k,1 > 0. An expression for m with respect to the coordinate basis

{eal®'"®€ak®€fl®"'®efl}dimv

a1y, =
on the factorization of m(-,-) when acting on tensors of rank 1: If we denote with

| of ®FV @' V* can be readily obtained using our condition

PPl = mea ®  ®eq, e @ el ey @ Qe RN @@ el

/
a1...q0]...q)
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the coeffcients of the extension m with respect to the above basis, we calculate:

B1---BrBi--By,

BT ey @ e, @D B D, g B D ey D @0 )
= m(€a;;€at) - - - M(Cay, ea;)m(efl, efi) ..m(e?, efz)
= Moo - - _mak%mﬁlﬂi .mPeL
The fact that m on ®*V ®' V* is non-degenerate follows readily from the fact that the corre-
sponding inner products on V and V* are non-degenerate: Let X € ®*V ®' V* be such that

m(X,Y)=0 forall Y €'V V"
In particular, expanding X = Xg' 0%e,, @ -+ @ eq, @' @ --- @ e, we obtain for Y = ey @ -+ ®
o ®EN D @l
m(X,eo, @ Qeq @l @ @ell) =0

= X5 Mayal - - .7’11%%771/3151 .omPPi =0 forall of,... .0k, B,,...0 €{l,...,dimV}.

Since the matrices [Mmaw] and [m??] are invertible, we infer from the above (for instance by multi-
plying with m®i7 . mawmﬁi(gl . .mﬁl/,(gl) that

Xgigh =0 forall v,...,9,01,...,0 € {1,dimV},

i.e. that X = 0.

(¢) In the case when m is a positive definite inner product on V, let us assume that {e, }dm" is
an orthonormal basis of V, so that m,s = . In that case, the dual basis {e2}4mV" of V* is also
orthonormal (since m®® = [m,p] ™' = d,5). Hence, for any X € @*V @' V*, we compute

dimV

/ ! of.ag, 2
m(X, X) = Moy - .maka;mﬁlﬁl B ‘mﬂlﬂngll...gkXﬁf...B;k = Z (ng_,éfk) )
017---7ak7517"'7ﬁl:1

so the extended inner product on ®*V ®! V* is also positive definite.

In the case when (V,m) is a Lorentzian inner product space, let 7" be a timelike vector of V' and
X a (non-zero) spacelike vector with 7" L X. Then, it is easy to verify that T® X and X ® T are
linearly independent (2,0) tensors and, moreover, any tensor of the form

V=MTRX+MX®T, (A,\)€R*\0
satisfies

m(V,V)=AXm(T@ X, T®X) + 22T X, XT)+ Xm(X T, X ®T)
= Mm(T, T)m(X, X) + 22 dom(T, X)m(X, T) + Xam(X, X)m(T,T)
= (AT + X)m(T, T)m(X, X) < 0.

Hence, (®2V,m) is not a Lorentzian inner product space, since m restricts to a negative definite
inner product on a 2-dimensional subspace of @2V,
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3.2 Let M" be a smooth manifold and let w : I'(M) — C*°(M) be C*°(M)-linear functional. We
will show that w is in fact an 1-form on M, ie. if Y € ['(M) then, for all p € M, w(Y)|,
depends only on Y|,

(a) Let U be an open neighborhood of p covered by a coordinate chart (z',...,z"). Show
that there exists an open neighborhood V of p contained inside ¢ and smooth vector fields

{X;}", on M such that X; = ;2 on V.

(b) Show that if Y|, = 0, then there exists a finite number of vector fields {V}}« such that

Y = kavk>
%

where the functions f, € C*(M) satisty fr(p) = 0. Deduce that w(Y)|, = 0 and, more
generally, w(Y)|, depends only on Y,.

The same argument should also work for more general C*°(M)-multilinear maps 7" : I'*(M) x

e X TF M) X T(M) X -+« x T(M) — C®(M).

Solution. (a) Let ¢ : U — R™ be a local coordinate chart defined on a neighborhood U of p and let

(x',...,2™) be the associated coordinate functions. Since ¢(Uf) is an open subset of R", there exists

a radius r > 0 so that the Euclidean ball Bs,(¢(p)) of radius 3r centered at ¢(p) is entirely contained
in ¢(U). Let x : R* — R be a smooth function so that

X =1on B, (¢(p)) and x =0 on R" \ By (é(p)).

Let us set V, = ¢~ (B,(¢(p))), Vor = ¢ (Bar(¢(p))) and Vs, = ¢~ (Bs,.(¢(p))) (see Figure 1).
Notice that, since ¢ is a homeomorphism, these are open subsets of M, satisfying

pEV, CVy C Vs,

Moreover, since clos(Ba(¢(p))) is a compact subset of ¢(U) (since it is strictly contained inside
Bs (¢(p)) C ¢U)) and ¢~' : ¢(U) — U is a homeomorphism, we know that clos(Ba,(¢(p))) is a
compact (and, hence, closed) subset of U. Since U is open, this implies in particular that

U N clos(Ba, (¢(p))) = 0. (2)

Let us define the function ¢ : M — R by the relation

_Jxoolg), ifgel,
w(q)_{o, it g e M\ U.

Note that the support of ¢ is contained in the set Vs, and ¥ = 1 on V.. We will now show that

¥ is a smooth function on M. The definition of ¢ implies that it is automatically smooth in the
open sets U and int (M \Z/{); thus, we only have to check its behaviour at oU. It will follow that
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Figure 1: Schematic depiction of the subsets V,, Vs, V5. C U and B,.(¢(p)), Bar(¢(p)), Bs.(¢(p)) C
R™. Note that the function v is supported in V,, and ¢y =1 on V,.

¢ € C®(M) if the set Z = {q € M : ¥(q) = 0} contains an open neighborhood of 9. Indeed,
since 1) is supported in V3., the set Z contains the open set W = M \ clos(V5,) and, in view of (2),

ou CW.

Having defined the smooth cut-off function ¢ : M — R as above, let us define the vector fields
X; (t=1,...,n) on M as follows:

V(g)x%, ifqel,
(0l = 4007
0, ifge M\U.

The vector fields X; are indeed smooth for the same reason that ¢ is smooth: They are trivially
smooth on U and int (M \Z/{) and, since 1) vanishes on an open neighborhood of OU , they are equal
to the zero vector field in a neighborhood of OU (and hence they are also smooth at oU). Moreover,
since ¢ = 1 on V,, we have

0
X, = i on the neighborhood V, of p.
xl

(b) Let Y € I'(M) be such that Y|, = 0. Note that, inside the open neighborhood U of p covered
by the coordinates (z',... z"), we can easily write Y as a sum of vector fields with coefficients

vanishing at p, since

e,

Y=Y"—

Ox!
and Y'(p) = --- = Y"(p) = 0 since Y|, = 0. The challenge is to obtain a similar decomposition
which is valid on the whole of M (where 32 is not well defined). To this end, we will use the cut-off

function ¢ and the vector fields X; from part (b) of the exercise.
Let us first decompose (trivially)

Y = %Y + (1 —¢?)Y. (3)
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If Y are the components of the vector field Y in the coordinate system (z',...,2™) on U, then the
vector field ¢Y can be expressed as

) 0 )
V()Y |, = w(q)Yz(q)axl. =Y"(¢)Xi|, for all ¢ € U.
Therefore, we have ‘
V(@)Y ], = (¥Y")(q) - Xil, for all ¢ € U. (4)

Notice that, in the above expression, the vector fields 1?Y and X; are defined on the whole of
the manifold M, but the functions ¥Y"* are only defined on U (covered by the coordinate system
(z',...,2™)). However, for each i = 1,ldots,n, 1)Y" vanishes in an open neighborhood of Ol and
hence (as in the case of ) it can be extended as a smooth function h? € C°°(M) so that

W(g) = {(@Yi(e), fqel0, ifqgeM\U.
Then, since the vector field 1*Y satisfies (4) on U and vanishes identically on M \ U, we have
V?Y = h'X; everywhere on M.

Returning to (3), we have A
Y =hX;+ (1 —9?)Y.

Notice that, on the right hand side, the coefficient of each vector field vanishes at p:
e Fori=1,...,n, h'(p) = Y'(p) = 0 since we assumed that Y|, = 0.
o (1—¢?)(p) = 0since ¥(p) = 1.

Thus, we succeeded to write

Y:kavk
s

for fr € C>°(M) and V, € T'(M) such that fi(p) = 0.
In view of our assumption that w(-) is C*°(M) in its argument, we therefore have:

@) @) = (w3 FiVi) ) 1) = D ful@)(@(Ve) (9) = 0.

By linearity, we also deduce that if Y7, Y, € I'(M) satisfy Yi|, = Y2/, then

(w(¥1))(p) = (w(Y2)) (p) = (w(Y1 = Y2)) (p) = 0.

3.3 Let M™ be a smooth manifold and let (z!, ... 2™) a local system of coordinates around p € M.
Let also S € @*T,M @' T*M be a tensor of type (k,I) at p and let S"% . . be its
corresponding components. We will define the contraction tr(S) to be the tensor

aig...0 a ; i
tr(S) — S 2.0 kan.“jl % ® e ® axlk ® dI.ZQ ® . ® dI'Ll7
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i.e. the components of tr(S) in the (z!,...,2") coordinates are simply the components of S
after summing over the first covariant and contravariant indices. Show that tr(S) is well-
defined independently of the choice of coordinate system, i.e. show that if (y',...,y") is a
different coordinate system around p and S are the components of S with respect
to these coordinates, then

J1j2---gi

SM?M%ajg...jz o R ® Sin RAdr? ® - - Q dax?
Sais...i 0 ‘ '
_ Goiz kajz...jz@(g)”.@ayik®dy2®'”®dyl'

Solution. Let S . and Sil“""“jlmjl be the components of S in the (z!,...,z") and (y',...,y")
coordinate systems, respectively. The two sets of coordinate tangent vectors and cotangent vectors
are related by ‘

0 ox® .oy

dy = dy and dy' = 8—gadx“,
while the relation between the two sets of components for .S is given by the usual transformation law
for tensors, i.e.

Oy Oy O Ozt

RO __ Qai...ak
S jl--jl e S bl...bl axal . .. 8xak 6yj1 . .. ay‘]l . (5)
In the above, gga denotes the Jacobian matrix of y = (y',...,y") as a function of z = (z!,...,z)

ox®

(see the 1°* Exercise Series), while > denotes the Jacobian of the inverse function z = z(y). Recall

that, for any diffeomorphism ® : Q C R" — Q' C R", the Jacobian matrix [D(@‘l)} of the inverse
function ®~! satisfies:

[D(®H](®(2)) = [D((I)_l)]fl(z) for all z € Q.
9yt Oz
ox? oyt
common domain of definition of the coordinate charts (z',...,2") and (y',...,y") are the inverse of
one another, i.e.

Therefore, as we've seen in class, the matrices [ } and [ ] evaluated at the same point p in the

oyt Ox® , oz® Oy
= =0 d — == =9¢,. 6
oxe  Qyi i A oyt Oxb b (6)
In order for the contraction tr(.S) to be well-defined independently of the coordinate system, we
need to show that

iz 0 . i
& kan...jz@@"”@aw®dx2®...®dxz

oo, 8 i ;

= S kajz---jz@@)'”@ayik®d92®”'®dyla

which is the same as saying that the components of tr(S) transform under changes of coordinates
like a tensor of type (k — 1,1 — 1), i.e.:

~ 12 ik b2 b
_ tr(§) dy oy'* Ox ox

&N iz ik
tr(.5) baobt Graz " Gar Gyiz T Gyt

(7)

J2--:1
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In order to show (7), we will calculate tr(S) using the formula (5):

ik _ aadz.ik
tr(S) ", 5 =5 e

oy~ Oy oy Oxh Oxb oz

— Sal---ak .
biba.. by ax(“ axcm e agj‘a’k ayu ayJQ e ay]l

— Go102--ak (’)ya afrbl 3y12 3y’k 0xb2 axbl

- bbb (017“1 ' Oy”f) Oz Oz Oy Oyl
i i b b

(6:) Salag...ak i (Sbl ay 2 ay k ax 2 8(13 !

b1b2...bl ai ’ a$a2 e axak ' 0y]2 e ay]l
dy> Oy oz dah
abs..by Oz U Oxrar ' ayh U 83/]1
19 ik b2 bl
T A i
ba...b; a2 Oxar ayj2 8yjz ;

— S”a2---‘lk

i.e. (7) holds.

3.4 Let (M, g) be a smooth Lorentzian manifold which is not time orientable. Prove that there
exists a Lorentzian manifold (M’, ¢') which is time orientable and a map F': M’ — M which
is 2 — 1 and a local isometry. Such a space is called a time-orientable cover. (Hint: You might
want to consider the causal line seed field {X,—X} over M constructed in Erercise 2.4 last
week, and study its properties a a submanifold of TM.)

Solution. We have seen in class that a Lorentzian manifold (M, g) is time orientable if and only
if there exists a causal vector field X € I'(M). We also saw in Exercise 2.4 that any Lorentzian
manifold (M, g) (whether time-orientable or not) admits a smooth causal line field, that is to say,
an assignment of a pair of opposite tangent vectors p — .7, = {X,, —X,} C T,M \ 0 for all p € M
such that, for each p € M:

1. The vectors X,, —X, € T, M \ 0 are causal with respect to g,,

2. There exists an open neighborhood U, and a smooth vector field Y on U such that, for all
qel, S ={Y,,—Y,} (note that such a vector field ¥ cannot exist globally on M if (M, g)
is not time orientable).

Let us consider the subset . of T M defined by

s =) A clpM=TM.

peEM peEM

We will first show that .¥ is a smooth submanifold of T M. To this end, it suffices to show that,
for any p € M, there exists an open neighborhood V of p such that 7=1(V) N . is a submanifold of
TM,; recall that 7 : TM — M is the base projection map

(¢, &) =q forany ¢ e M,& € T, M.
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For any point p € M, property 2 above says that there exists an open neighorhood U of p and a
vector field Y on U such that, if we view Y as a map from U to TU (sending p — Y, € T, M), then
L= N7 U) is just the disjoint union of the images of Y and —Y, i.e.

A=y [[(-vw)) =7 ]]7w.

Given any local coordinate chart ® : )V — R" on an open set V C U with associated coordi-
nates (z',...,2"), we can define a coordinate chart ® : TV — R?" with associated coordinates

(!, ..., 2™ o', ... v"™) so that, for any p € V and £ € T,M:

(xl, oo vl,...,v”)(p,f) = (xl(p),...,x"(p); dm1|p(§), . ,dx”|p(§)).

In any such coordinate system (z!,...,z"; vl ... v"), the sets .#+(V) correspond to the smooth
submanifolds of R?® described by the equations

Vi =Y 22, i=1,...,n.

Thus, . is a smooth submanifold of T M. Moreover, for V as above, the maps Y : V — ., (V) and
-Y :V — % (V) are diffeomorphisms: They are immersions (since any vector field Y : V — TV is
an immersion, as can be explicitly checked in the coordinates fixed above) and they satisfy

moY =1Idy, 7wo(=Y)=Idy.

As a result, the map 7 : .¥ — M is a local diffeomorphism (not a global one, though, since the
inverse image of any point of M contains two points of .%’). We can therefore equip . with the
pull-back metric ¢' = m.g (this is a well-defined Lorentzian metric, since dr : T,,.” = Tr(M is
1-1 and onto for any w € .); this, by definition, turns the map = : (., ¢') — (M, g) into a local
isometry.

We will now show that (., ¢’) is time-orientable. To this end, it suffices to find a globally defined
smooth causal vector field on .. From our definition of ., any point w € . C T'’M is of the form
(q,€) for some ¢ € M and { € T,M \ 0 which is causal with respect to g,. Since 7 : ./ — M,
7(q,§) = ¢, is a local isometry, the differential dn|,e) @ (T(g.0)-" ¢ |(0.0)) = (T3M,glq) is a linear
isometry; thus, we can define the vector field Y’ on . by the relation

, ~1
Y |(q7€) = (d7T|(q7§)) f for any (q,f’) .. (8)

Note that, since dw](qjg))_l is a linear isometry, Y”|(,¢) is causal with respect to ¢’ (since ¢ is causal
with respect to g). Moreover, Y’ as defined above is indeed smooth since, for any w = (¢,&) € .,
there exists an open neighborhood U’ of w in . such that = : U’ — w(U’) is a diffeomorphism and
any w' = (¢',¢') € U’ is of the form ¢’ = Y|, for a smooth vector field Y on 7(U’) (this is essentially
property 2 above); thus, Y’|;, as defined by (8) is the push-forward of the smooth vector field Y
on w(U') C M via the map Y : 7(U') — U’ (viewed as the inverse of 7|,) and, therefore, Y|, is
smooth.

We have, thus, shown that 7 : (,¢') = (M,g) is a 2 — 1 map which is a local isometry and
that (.7, ¢’) is time-orientable; this construction is carried out irrespectively of whether (M, g) is
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time orientable or not. In the case when (M, g) is time orientable, . will consist of two components
(since the causal line field in this case can be written as the union of two causal vector fields defined
everywhere on M) and 7 is an isometry when restricted to each of them. If (M,g), then .% is
connected.
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