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3.1 (a) Let (V1,m1) and (V2,m2) be two inner product spaces (i.e. mi : Vi × Vi → R is symmetric and
bilinear, but we do not assume that it is non-degenerate). Prove that there exists a unique
inner product m

.
= m1 ⊗m2 on V1 ⊗ V2 with the property that

m(X1 ⊗X2, Y1 ⊗ Y2) = m1(X1, Y1) ·m2(X2, Y2).

(b) Let (V,m) be an inner product space with a non-degenerate inner product m. Prove that m
can be extended to a unique non-degenerate inner product on the space of tensors of type (k, ℓ)
over V (i.e. the space ⊗kV ⊗ℓ V ∗) by the conditions that:

1. m(f1 ⊗ f2, g1 ⊗ g2) = m(f1, g1) · m(f2, g2) for any fi, gi ∈ ⊗kiV ⊗ℓi V ∗, i = 1, 2, with
k1 + k2 = k, ℓ1 + ℓ2 = ℓ,

2. m(X♭, Y♭) = m(X, Y ), where, for any X ∈ V , we de�ne X♭ ∈ V ∗ by X♭
.
= m(X, ·).

What are the components of this extension of m with respect to a basis of ⊗kV ⊗ℓV ∗ associated
to a basis {ea}dimV

α=1 of V ?

(c) Let (V,m) be as in part (b). Prove that the extension of m to ⊗kV ⊗ℓ V ∗ is positive de�nite if
m is positive de�nite. Is the analogous statement true if m is a Lorentzian inner product?

Solution. (a) The existence of such an inner product m on V1 ⊗ V2 follows easily by �xing bases for
V1 and V2: If {eα}dimV1

α=1 and {fβ}dimV2
β=1 are bases (not necessarily orthonormal) for the vector spaces

V1 and V2 respectively, and {eα∗}
dimV1
α=1 and {fβ

∗ }
dimV2
β=1 are the corresponding dual bases for V ∗

1 and

V ∗
2 , respectively (i.e. eα∗ (eα′) = δαα′ and similarly for fβ

∗ , fβ′), one can easily check that the tensors
{eα ⊗ fβ}α,β form a basis for V1 ⊗ V2: Any Z ∈ V1 ⊗ V2 (viewed as a bilinear map Z : V ∗

1 × V ∗
2 → R

can be uniquely expressed as

Z = Z(eα∗ , f
β
∗ )eα ⊗ fβ

.
= Zαβeα ⊗ fβ

by noting that, for any v∗ = v∗αe
α
∗ ∈ V ∗

1 and w∗ = w∗
βf

β
∗ ∈ V ∗

2 ,

Z(v∗, w∗) = Z(v∗αe
α
∗ , w

∗
βf

β
∗ ) = Z(eα∗ , f

β
∗ )v

∗
αw

∗
β = Z(eα∗ , f

β
∗ )eα ⊗ fβ(v

∗, w∗).

With such bases �xed, let us de�ne the inner product m on V1 ⊗ V2 de�ned by

m(Z,W ) = m
(
Zα,βeα ⊗ fβ,W

α′β′
eα′ ⊗ fβ′

) .
= ZαβWα′β′

m1(eα, eα′)m2(fβ, fβ′)

(it is straightforward to check that m de�ned as above is symmetric and bilinear). Note that m
satis�es the required property: For any X1, Y1 ∈ V1 and X2, Y2 ∈ V2:

m(X1 ⊗X2, Y1 ⊗ Y2) = m
(
Xα

1X
β
2 eα ⊗ fβ, Y

α′

1 Y β′

2 eα′ ⊗ fβ′
)

= Xα
1X

β
2 Y

α′

1 Y β′

2 m1(eα, eα′)m2(fβ, fβ′)

= m1(X
α
1 eα, Y

α′

1 eα′)m2(X
β
2 fβ, Y

β′

2 fβ′)

= m1(X1, Y1)m2(X2, Y2).
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On the other hand, the uniqueness ofm can be readily shown as follows: Let m̃ be another symmetric
bilinear form satisfying

m̃(X1⊗X2, Y1⊗Y2) = m1(X1, Y1)m2(X2, Y2) = m(X1⊗X2, Y1⊗Y2) for all X1, Y1 ∈ V1 and X2, Y2 ∈ V2

and let us consider the di�erence M = m− m̃. Then, the symmetric bilinear form M satis�es

M(eα ⊗ fβ, eα′ ⊗ fβ′) = m1(eα, eα′)m2(fβ, fβ′)−m1(eα, eα′)m2(fβ, fβ′) = 0

for all α, α′, β, β′; thus, since every element in V1 ⊗ V2 can be written as a linear combination of
tensors of the form eα ⊗ fβ, we infer that M ≡ 0.

(b) We will �rst show that the two conditions indeed �x a unique symmetric bilinear form m on
⊗kV ⊗l V ∗ for any k, l ⩾ 0. Arguing inductively on successive tensor products using part (a) of this
exercise, it su�ces to show that a unique such m is �xed for k = 0, l = 1, i.e. for V ∗, by the condition
that

m(X♭, Y♭) = m(X, Y ) for all X, Y ∈ V. (1)

Note that, since m is assumed to be non-degenerate, for any ω ∈ V ∗ there exists a unique ω♯ ∈ V
such that ω = m(ω♯, ·), i.e. ω = (ω♯)♭. Thus, if we extend m on V ∗ by

m(ω1, ω2)
.
= m(ω♯

1, ω
♯
2)

(note that the above expression is manifestly symmetric and bilinear in ω1, ω2), then (1) is satis�ed.
As in part (a), let {eα}dimV

α=1 be a basis of V and {eα∗}dimV
α=1 be the corresponding dual basis of V ∗.

Let us denote with mαβ
.
= m(eα, eβ) the components of m with respect to the basis {eα}dimV

α=1 of V
and with mαβ .

= m(eα∗ , e
β
∗ ) the corresponding components of m with respect to the basis {eα∗}dimV

α=1 of
V ∗. Then, the musical isomorphism X → X♭ = m(X, ·) takes the form

(X♭)α = mαβX
β,

which implies in particular (in view of the fact that (eα)
β = δβα)(

(eγ)♭
)
α
= mγα.

Our condition m(X♭, Y♭) = m(X, Y ) for the extension of m to V ∗ then yields for any eα, eβ:

m((eα)♭, (eβ)♭) = m(eα, eβ) ⇔ mγδ(eα)♭)γ, (eβ)♭)δ = mαβ ⇔ mγδmγαmδβ = mαβ,

i.e. the matrix [mαβ] is the inverse of [mαβ]. In particular, m is a non-degenerate inner product on
V ∗ (since its matrix of coe�cients is invertible).

Arguing inductively using part (a), we infer that m admits a unique extension with the required
property on ⊗kV ⊗l V ∗ for any k, l ⩾ 0. An expression for m with respect to the coordinate basis{
eα1 ⊗· · ·⊗ eαk

⊗ eβ1
∗ ⊗· · ·⊗ eβl

∗
}dimV

α1,...,β1,...=1
of ⊗kV ⊗l V ∗ can be readily obtained using our condition

on the factorization of m(·, ·) when acting on tensors of rank 1: If we denote with

m
β1...βkβ

′
1...β

′
k

α1...ala
′
1...a

′
l
= m

(
eα1 ⊗ · · · ⊗ eαk

⊗ eβ1
∗ ⊗ · · · ⊗ eβl

∗ , eα′
1
⊗ · · · ⊗ eα′

k
⊗ e

β′
1

∗ ⊗ · · · ⊗ e
β′
l

∗
)
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the coe�cients of the extension m with respect to the above basis, we calculate:

m
β1...βkβ

′
1...β

′
k

α1...ala
′
1...a

′
l
= m

(
eα1 ⊗ · · · ⊗ eαk

⊗ eβ1
∗ ⊗ · · · ⊗ eβl

∗ , eα′
1
⊗ · · · ⊗ eα′

k
⊗ e

β′
1

∗ ⊗ · · · ⊗ e
β′
l

∗
)

= m(eα1 , eα′
1
) . . .m(eαk

, eα′
k
)m(eβ1

∗ , e
β′
1

∗ ) . . .m(eβl
∗ , e

β′
l

∗ )

= mα1α′
1
. . .mαkα

′
k
mβ1β′

1 . . .mβlβ
′
l .

The fact that m on ⊗kV ⊗l V ∗ is non-degenerate follows readily from the fact that the corre-
sponding inner products on V and V ∗ are non-degenerate: Let X ∈ ⊗kV ⊗l V ∗ be such that

m(X, Y ) = 0 for all Y ∈ ⊗kV ⊗l V ∗.

In particular, expanding X = Xα1...αk
β1...βl

eα1 ⊗ · · · ⊗ eαk
⊗ eβ1

∗ ⊗ · · · ⊗ eβl
∗ , we obtain for Y = eα′

1
⊗ · · · ⊗

eα′
k
⊗ e

β′
1

∗ ⊗ · · · ⊗ e
β′
l

∗

m
(
X, eα′

1
⊗ · · · ⊗ eα′

k
⊗ e

β′
1

∗ ⊗ · · · ⊗ e
β′
l

∗
)
= 0

⇒ Xα1...αk
β1...βl

mα1α′
1
. . .mαkα

′
k
mβ1β′

1 . . .mβlβ
′
l = 0 for all α′

1, . . . α
′
k, β

′
1, . . . β

′
l ∈ {1, . . . , dimV }.

Since the matrices [mαα′ ] and [mββ′
] are invertible, we infer from the above (for instance by multi-

plying with mα′
1γ1 . . .mα′

kγkmβ′
1δ1
. . .mβ′

l,δl
) that

Xγ1...γk
δ1...δl

= 0 for all γ1, . . . , γk, δ1, . . . , δl ∈ {1, dimV },

i.e. that X = 0.

(c) In the case when m is a positive de�nite inner product on V , let us assume that {eα}dimV
α=1 is

an orthonormal basis of V , so that mαβ = δαβ. In that case, the dual basis {eα∗}dimV ∗
α=1 of V ∗ is also

orthonormal (since mαβ = [mαβ]
−1 = δαβ). Hence, for any X ∈ ⊗kV ⊗l V ∗, we compute

m(X,X) = mα1α′
1
. . .mαkα

′
k
mβ1β′

1 . . .mβlβ
′
lXα1...αk

β1...βl
X

α′
1...α

′
k

β′
1...β

′
l
=

dimV∑
α1,...,αk,β1,...,βl=1

(Xα1...αk
β1...βl

)2,

so the extended inner product on ⊗kV ⊗l V ∗ is also positive de�nite.
In the case when (V,m) is a Lorentzian inner product space, let T be a timelike vector of V and

X a (non-zero) spacelike vector with T ⊥ X. Then, it is easy to verify that T ⊗X and X ⊗ T are
linearly independent (2, 0) tensors and, moreover, any tensor of the form

V = λ1T ⊗X + λ2X ⊗ T, (λ1, λ2) ∈ R
2 \ 0

satis�es

m(V, V ) = λ21m(T ⊗X,T ⊗X) + 2λ1λ2m(T ⊗X,X ⊗ T ) + λ22m(X ⊗ T,X ⊗ T )

= λ21m(T, T )m(X,X) + 2λ1λ2m(T,X)m(X,T ) + λ22m(X,X)m(T, T )

= (λ21 + λ22)m(T, T )m(X,X) < 0.

Hence, (⊗2V,m) is not a Lorentzian inner product space, since m restricts to a negative de�nite
inner product on a 2-dimensional subspace of ⊗2V .
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3.2 Let Mn be a smooth manifold and let ω : Γ(M) → C∞(M) be C∞(M)-linear functional. We
will show that ω is in fact an 1-form on M, i.e. if Y ∈ Γ(M) then, for all p ∈ M, ω(Y )|p
depends only on Y |p.

(a) Let U be an open neighborhood of p covered by a coordinate chart (x1, . . . , xn). Show
that there exists an open neighborhood V of p contained inside U and smooth vector �elds
{Xi}ni=1 on M such that Xi =

∂
∂xi on V .

(b) Show that if Y |p = 0, then there exists a �nite number of vector �elds {Vk}k such that

Y =
∑
k

fkVk,

where the functions fk ∈ C∞(M) satisfy fk(p) = 0. Deduce that ω(Y )|p = 0 and, more
generally, ω(Y )|p depends only on Y |p.

The same argument should also work for more general C∞(M)-multilinear maps T : Γ∗(M)×
· · · × Γ∗(M)× Γ(M)× · · · × Γ(M) → C∞(M).

Solution. (a) Let ϕ : U → R
n be a local coordinate chart de�ned on a neighborhood U of p and let

(x1, . . . , xn) be the associated coordinate functions. Since ϕ(U) is an open subset of Rn, there exists
a radius r > 0 so that the Euclidean ball B3r(ϕ(p)) of radius 3r centered at ϕ(p) is entirely contained
in ϕ(U). Let χ : Rn → R be a smooth function so that

χ ≡ 1 on Br(ϕ(p)) and χ ≡ 0 on Rn \B2r(ϕ(p)).

Let us set Vr = ϕ−1
(
Br(ϕ(p))

)
, V2r = ϕ−1

(
B2r(ϕ(p))

)
and V3r = ϕ−1

(
B3r(ϕ(p))

)
(see Figure 1).

Notice that, since ϕ is a homeomorphism, these are open subsets of M, satisfying

p ∈ Vr ⊂ V2r ⊂ V3r.

Moreover, since clos
(
B2r(ϕ(p))

)
is a compact subset of ϕ(U) (since it is strictly contained inside

B3r(ϕ(p)) ⊂ ϕ(U)) and ϕ−1 : ϕ(U) → U is a homeomorphism, we know that clos
(
B2r(ϕ(p))

)
is a

compact (and, hence, closed) subset of U . Since U is open, this implies in particular that

∂U ∩ clos
(
B2r(ϕ(p))

)
= ∅. (2)

Let us de�ne the function ψ : M → R by the relation

ψ(q) =

{
χ ◦ ϕ(q), if q ∈ U ,
0, if q ∈ M \ U .

Note that the support of ψ is contained in the set V2r and ψ ≡ 1 on Vr. We will now show that
ψ is a smooth function on M. The de�nition of ψ implies that it is automatically smooth in the
open sets U and int

(
M \ U

)
; thus, we only have to check its behaviour at ∂U . It will follow that
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ϕ

ϕ−1

U ϕ(U)
∂U

V3r

V2r

Vr

p ϕ(p)

Br

B2r

B3r

Figure 1: Schematic depiction of the subsets Vr, V2r, V3r ⊂ U and Br(ϕ(p)), B2r(ϕ(p)), B3r(ϕ(p)) ⊂
R
n. Note that the function ψ is supported in V2r and ψ ≡ 1 on Vr.

ψ ∈ C∞(M) if the set Z =
{
q ∈ M : ψ(q) = 0

}
contains an open neighborhood of ∂U . Indeed,

since ψ is supported in V2r, the set Z contains the open set W = M\ clos(V2r) and, in view of (2),

∂U ⊂ W .

Having de�ned the smooth cut-o� function ψ : M → R as above, let us de�ne the vector �elds
Xi (i = 1, . . . , n) on M as follows:

(Xi)|q =

{
ψ(q) ∂

∂xi , if q ∈ U ,
0, if q ∈ M \ U .

The vector �elds Xi are indeed smooth for the same reason that ψ is smooth: They are trivially
smooth on U and int

(
M\U

)
and, since ψ vanishes on an open neighborhood of ∂U , they are equal

to the zero vector �eld in a neighborhood of ∂U (and hence they are also smooth at ∂U). Moreover,
since ψ = 1 on Vr, we have

Xi =
∂

∂xi
on the neighborhood Vr of p.

(b) Let Y ∈ Γ(M) be such that Y |p = 0. Note that, inside the open neighborhood U of p covered
by the coordinates (x1, . . . , xn), we can easily write Y as a sum of vector �elds with coe�cients
vanishing at p, since

Y = Y i ∂

∂xi

and Y 1(p) = · · · = Y n(p) = 0 since Y |p = 0. The challenge is to obtain a similar decomposition
which is valid on the whole of M (where ∂

∂xi is not well de�ned). To this end, we will use the cut-o�
function ψ and the vector �elds Xi from part (b) of the exercise.

Let us �rst decompose (trivially)

Y = ψ2Y + (1− ψ2)Y. (3)
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If Y i are the components of the vector �eld Y in the coordinate system (x1, . . . , xn) on U , then the
vector �eld ψY can be expressed as

ψ(q)Y |q = ψ(q)Y i(q)
∂

∂xi
= Y i(q)Xi|q for all q ∈ U .

Therefore, we have
ψ2(q)Y |q =

(
ψY i

)
(q) ·Xi|q for all q ∈ U . (4)

Notice that, in the above expression, the vector �elds ψ2Y and Xi are de�ned on the whole of
the manifold M, but the functions ψY i are only de�ned on U (covered by the coordinate system
(x1, . . . , xn)). However, for each i = 1, ldots, n, ψY i vanishes in an open neighborhood of ∂U and
hence (as in the case of ψ) it can be extended as a smooth function hi ∈ C∞(M) so that

hi(q) =
{
ψ(q)Y i(q), if q ∈ U , 0, if q ∈ M \ U .

Then, since the vector �eld ψ2Y satis�es (4) on U and vanishes identically on M\ U , we have

ψ2Y = hiXi everywhere on M.

Returning to (3), we have
Y = hiXi + (1− ψ2)Y.

Notice that, on the right hand side, the coe�cient of each vector �eld vanishes at p:

� For i = 1, . . . , n, hi(p) = Y i(p) = 0 since we assumed that Y |p = 0.

� (1− ψ2)(p) = 0 since ψ(p) = 1.

Thus, we succeeded to write

Y =
∑
k

fkVk

for fk ∈ C∞(M) and Vk ∈ Γ(M) such that fk(p) = 0.
In view of our assumption that ω(·) is C∞(M) in its argument, we therefore have:(

ω(Y )
)
(p) =

(
ω
(∑

k

fkVk
))

(p) =
∑
k

fk(p)
(
ω(Vk)

)
(p) = 0.

By linearity, we also deduce that if Y1, Y2 ∈ Γ(M) satisfy Y1|p = Y2|p, then(
ω(Y1)

)
(p)−

(
ω(Y2)

)
(p) =

(
ω(Y1 − Y2)

)
(p) = 0.

3.3 Let Mn be a smooth manifold and let (x1, . . . , xn) a local system of coordinates around p ∈ M.
Let also S ∈ ⊗kTpM ⊗l T ∗

pM be a tensor of type (k, l) at p and let Si1i2...ik
i1j2...jl

be its
corresponding components. We will de�ne the contraction tr(S) to be the tensor

tr(S) = Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxi2 ⊗ · · · ⊗ dxil ,
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i.e. the components of tr(S) in the (x1, . . . , xn) coordinates are simply the components of S
after summing over the �rst covariant and contravariant indices. Show that tr(S) is well-
de�ned independently of the choice of coordinate system, i.e. show that if (y1, . . . , yn) is a
di�erent coordinate system around p and S̃i1i2...ik

j1j2...jl
are the components of S with respect

to these coordinates, then

Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxi2 ⊗ · · · ⊗ dxil

= S̃αi2...ik
αj2...jl

∂

∂yi2
⊗ · · · ⊗ ∂

∂yik
⊗ dyi2 ⊗ · · · ⊗ dyil .

Solution. Let Si1...ik
j1...jl

and S̃i1...ik
j1...jl

be the components of S in the (x1, . . . , xn) and (y1, . . . , yn)
coordinate systems, respectively. The two sets of coordinate tangent vectors and cotangent vectors
are related by

∂

∂yi
=
∂xa

∂yi
and dyi =

∂yi

∂xa
dxa,

while the relation between the two sets of components for S is given by the usual transformation law
for tensors, i.e.

S̃i1...ik
j1...jl

= Sa1...ak
b1...bl

∂yi1

∂xa1
. . .

∂yik

∂xak
∂xb1

∂yj1
. . .

∂xbl

∂yjl
. (5)

In the above, ∂yi

∂xa denotes the Jacobian matrix of y = (y1, . . . , yn) as a function of x = (x1, . . . , x1)
(see the 1st Exercise Series), while ∂xa

∂yi
denotes the Jacobian of the inverse function x = x(y). Recall

that, for any di�eomorphism Φ : Ω ⊂ R
n → Ω′ ⊂ R

n, the Jacobian matrix
[
D(Φ−1)

]
of the inverse

function Φ−1 satis�es: [
D(Φ−1)

](
Φ(z)

)
=

[
D(Φ−1)

]−1
(z) for all z ∈ Ω.

Therefore, as we've seen in class, the matrices
[
∂yi

∂xa

]
and

[
∂xa

∂yi

]
evaluated at the same point p in the

common domain of de�nition of the coordinate charts (x1, . . . , xn) and (y1, . . . , yn) are the inverse of
one another, i.e.

∂yi

∂xa
· ∂x

a

∂yj
= δij and

∂xa

∂yi
· ∂y

i

∂xb
= δab . (6)

In order for the contraction tr(S) to be well-de�ned independently of the coordinate system, we
need to show that

Sαi2...ik
αj2...jl

∂

∂xi2
⊗ · · · ⊗ ∂

∂xik
⊗ dxi2 ⊗ · · · ⊗ dxil

= S̃αi2...ik
αj2...jl

∂

∂yi2
⊗ · · · ⊗ ∂

∂yik
⊗ dyi2 ⊗ · · · ⊗ dyil ,

which is the same as saying that the components of tr(S) transform under changes of coordinates
like a tensor of type (k − 1, l − 1), i.e.:

tr(S̃)i2...ikj2...jl = tr(S̃)a2...akb2...bl
∂yi2

∂xa2
. . .

∂yik

∂xak
∂xb2

∂yj2
. . .

∂xbl

∂yjl
. (7)
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In order to show (7), we will calculate tr(S̃) using the formula (5):

tr(S̃)i2...ikj2...jl = S̃αi2...ik
αj2...jl

= Sa1...ak
b1b2...bl

∂yα

∂xa1
· ∂y

i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b1

∂yα
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= Sa1a2...ak
b1b2...bl

( ∂yα
∂xa1

· ∂x
b1

∂yα

)
· ∂y

i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

(6)
= Sa1a2...ak

b1b2...bl
· δb1a1 ·

∂yi2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= Sαa2...ak
αb2...bl

· ∂y
i2

∂xa2
. . .

∂yik

∂xak
· ∂x

b2

∂yj2
. . .

∂xbl

∂yjl

= tr(S)a2...akb2...bl
∂yi2

∂xa2
. . .

∂yik

∂xak
∂xb2

∂yj2
. . .

∂xbl

∂yjl
,

i.e. (7) holds.

3.4 Let (M, g) be a smooth Lorentzian manifold which is not time orientable. Prove that there
exists a Lorentzian manifold (M′, g′) which is time orientable and a map F : M ′ → M which
is 2− 1 and a local isometry. Such a space is called a time-orientable cover. (Hint: You might

want to consider the causal line seed �eld {X,−X} over M constructed in Exercise 2.4 last

week, and study its properties a a submanifold of TM.)

Solution. We have seen in class that a Lorentzian manifold (M, g) is time orientable if and only
if there exists a causal vector �eld X ∈ Γ(M). We also saw in Exercise 2.4 that any Lorentzian
manifold (M, g) (whether time-orientable or not) admits a smooth causal line �eld, that is to say,
an assignment of a pair of opposite tangent vectors p → Sp = {Xp,−Xp} ⊂ TpM\ 0 for all p ∈ M
such that, for each p ∈ M:

1. The vectors Xp,−Xp ∈ TpM\ 0 are causal with respect to gp,

2. There exists an open neighborhood Up and a smooth vector �eld Y on U such that, for all
q ∈ U , Sq = {Yq,−Yq} (note that such a vector �eld Y cannot exist globally on M if (M, g)
is not time orientable).

Let us consider the subset S of TM de�ned by

S =
⋃
p∈M

Sp ⊂
⋃
p∈M

TpM = TM.

We will �rst show that S is a smooth submanifold of TM. To this end, it su�ces to show that,
for any p ∈ M, there exists an open neighborhood V of p such that π−1(V) ∩ S is a submanifold of
TM; recall that π : TM → M is the base projection map

π(q, ξ) = q for any q ∈ M, ξ ∈ TqM.
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For any point p ∈ M, property 2 above says that there exists an open neighorhood U of p and a
vector �eld Y on U such that, if we view Y as a map from U to TU (sending p→ Yp ∈ TpM), then
S |U = S ∩ π−1(U) is just the disjoint union of the images of Y and −Y , i.e.

S |U = Y (U)
∐(

− Y (U
)
)
.
= S+(U)

∐
S−(U).

Given any local coordinate chart Φ : V → R
n on an open set V ⊂ U with associated coordi-

nates (x1, . . . , xn), we can de�ne a coordinate chart Φ̃ : TV → R
2n with associated coordinates

(x1, . . . , xn; v1, . . . , vn) so that, for any p ∈ V and ξ ∈ TpM:(
x1, . . . , xn; v1, . . . , vn

)
(p, ξ) =

(
x1(p), . . . , xn(p); dx1|p(ξ), . . . , dxn|p(ξ)

)
.

In any such coordinate system (x1, . . . , xn; v1, . . . , vn), the sets S±(V) correspond to the smooth
submanifolds of R2n described by the equations

vi = ±Y i(x1, . . . , xn), i = 1, . . . , n.

Thus, S is a smooth submanifold of TM. Moreover, for V as above, the maps Y : V → S+(V) and
−Y : V → S−(V) are di�eomorphisms: They are immersions (since any vector �eld Y : V → TV is
an immersion, as can be explicitly checked in the coordinates �xed above) and they satisfy

π ◦ Y = IdV , π ◦ (−Y ) = IdV .

As a result, the map π : S → M is a local di�eomorphism (not a global one, though, since the
inverse image of any point of M contains two points of S ). We can therefore equip S with the
pull-back metric g′ = π∗g (this is a well-de�ned Lorentzian metric, since dπ : TwS → Tπ(w)M is
1-1 and onto for any w ∈ S ); this, by de�nition, turns the map π : (S , g′) → (M, g) into a local
isometry.

We will now show that (S , g′) is time-orientable. To this end, it su�ces to �nd a globally de�ned
smooth causal vector �eld on S . From our de�nition of S , any point w ∈ S ⊂ TM is of the form
(q, ξ) for some q ∈ M and ξ ∈ TqM \ 0 which is causal with respect to gq. Since π : S → M,
π(q, ξ) = q, is a local isometry, the di�erential dπ|(q,ξ) : (T(q,ξ)S , g′|(q,ξ)) → (TqM, g|q) is a linear
isometry; thus, we can de�ne the vector �eld Y ′ on S by the relation

Y ′|(q,ξ) =
(
dπ|(q,ξ)

)−1
ξ for any (q, ξ) ∈ S . (8)

Note that, since dπ|(q,ξ)
)−1

is a linear isometry, Y ′|(q,ξ) is causal with respect to g′ (since ξ is causal
with respect to g). Moreover, Y ′ as de�ned above is indeed smooth since, for any w = (q, ξ) ∈ S ,
there exists an open neighborhood U ′ of w in S such that π : U ′ → π(U ′) is a di�eomorphism and
any w′ = (q′, ξ′) ∈ U ′ is of the form ξ′ = Y |q′ for a smooth vector �eld Y on π(U ′) (this is essentially
property 2 above); thus, Y ′|U ′ as de�ned by (8) is the push-forward of the smooth vector �eld Y
on π(U ′) ⊂ M via the map Y : π(U ′) → U ′ (viewed as the inverse of π|U ′) and, therefore, Y ′|U ′ is
smooth.

We have, thus, shown that π : (S , g′) → (M, g) is a 2 − 1 map which is a local isometry and
that (S , g′) is time-orientable; this construction is carried out irrespectively of whether (M, g) is
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time orientable or not. In the case when (M, g) is time orientable, S will consist of two components
(since the causal line �eld in this case can be written as the union of two causal vector �elds de�ned
everywhere on M) and π is an isometry when restricted to each of them. If (M, g), then S is
connected.
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