G. Moschidis 25 Sep. 2024

3.1 (a) Let (V_1, m_1) and (V_2, m_2) be two inner product spaces (i.e. $m_i : V_i \times V_i \to \mathbb{R}$ is symmetric and bilinear, but we do not assume that it is non-degenerate). Prove that there exists a unique inner product $m \doteq m_1 \otimes m_2$ on $V_1 \otimes V_2$ with the property that

$$m(X_1 \otimes X_2, Y_1 \otimes Y_2) = m_1(X_1, Y_1) \cdot m_2(X_2, Y_2).$$

- (b) Let (V, m) be an inner product space with a non-degenerate inner product m. Prove that m can be extended to a unique non-degenerate inner product on the space of tensors of type (k, ℓ) over V (i.e. the space $\otimes^k V \otimes^\ell V^*$) by the conditions that:
 - 1. $m(f_1 \otimes f_2, g_1 \otimes g_2) = m(f_1, g_1) \cdot m(f_2, g_2)$ for any $f_i, g_i \in \otimes^{k_i} V \otimes^{\ell_i} V^*$, i = 1, 2, with $k_1 + k_2 = k$, $\ell_1 + \ell_2 = \ell$,
 - 2. $m(X_{\flat}, Y_{\flat}) = m(X, Y)$, where, for any $X \in V$, we define $X_{\flat} \in V^*$ by $X_{\flat} \doteq m(X, \cdot)$.

What are the components of this extension of m with respect to a basis of $\otimes^k V \otimes^\ell V^*$ associated to a basis $\{e_a\}_{\alpha=1}^{\dim V}$ of V?

(c) Let (V, m) be as in part (b). Prove that the extension of m to $\otimes^k V \otimes^\ell V^*$ is positive definite if m is positive definite. Is the analogous statement true if m is a Lorentzian inner product?

Solution. (a) The existence of such an inner product m on $V_1 \otimes V_2$ follows easily by fixing bases for V_1 and V_2 : If $\{e_{\alpha}\}_{\alpha=1}^{\dim V_1}$ and $\{f_{\beta}\}_{\beta=1}^{\dim V_2}$ are bases (not necessarily orthonormal) for the vector spaces V_1 and V_2 respectively, and $\{e_*^{\alpha}\}_{\alpha=1}^{\dim V_1}$ and $\{f_*^{\beta}\}_{\beta=1}^{\dim V_2}$ are the corresponding dual bases for V_1^* and V_2^* , respectively (i.e. $e_*^{\alpha}(e_{\alpha'}) = \delta_{\alpha'}^{\alpha}$ and similarly for f_*^{β} , $f_{\beta'}$), one can easily check that the tensors $\{e_{\alpha} \otimes f_{\beta}\}_{\alpha,\beta}$ form a basis for $V_1 \otimes V_2$: Any $Z \in V_1 \otimes V_2$ (viewed as a bilinear map $Z: V_1^* \times V_2^* \to \mathbb{R}$ can be uniquely expressed as

$$Z = Z(e^{\alpha}_{\star}, f^{\beta}_{\star})e_{\alpha} \otimes f_{\beta} \doteq Z^{\alpha\beta}e_{\alpha} \otimes f_{\beta}$$

by noting that, for any $v^* = v_{\alpha}^* e_*^{\alpha} \in V_1^*$ and $w^* = w_{\beta}^* f_*^{\beta} \in V_2^*$,

$$Z(v^*, w^*) = Z(v_{\alpha}^* e_*^{\alpha}, w_{\beta}^* f_*^{\beta}) = Z(e_*^{\alpha}, f_*^{\beta}) v_{\alpha}^* w_{\beta}^* = Z(e_*^{\alpha}, f_*^{\beta}) e_{\alpha} \otimes f_{\beta}(v^*, w^*).$$

With such bases fixed, let us define the inner product m on $V_1 \otimes V_2$ defined by

$$m(Z,W) = m(Z^{\alpha,\beta}e_{\alpha} \otimes f_{\beta}, W^{\alpha'\beta'}e_{\alpha'} \otimes f_{\beta'}) \doteq Z^{\alpha\beta}W^{\alpha'\beta'}m_1(e_{\alpha}, e_{\alpha'})m_2(f_{\beta}, f_{\beta'})$$

(it is straightforward to check that m defined as above is symmetric and bilinear). Note that m satisfies the required property: For any $X_1, Y_1 \in V_1$ and $X_2, Y_2 \in V_2$:

$$m(X_{1} \otimes X_{2}, Y_{1} \otimes Y_{2}) = m(X_{1}^{\alpha} X_{2}^{\beta} e_{\alpha} \otimes f_{\beta}, Y_{1}^{\alpha'} Y_{2}^{\beta'} e_{\alpha'} \otimes f_{\beta'})$$

$$= X_{1}^{\alpha} X_{2}^{\beta} Y_{1}^{\alpha'} Y_{2}^{\beta'} m_{1}(e_{\alpha}, e_{\alpha'}) m_{2}(f_{\beta}, f_{\beta'})$$

$$= m_{1}(X_{1}^{\alpha} e_{\alpha}, Y_{1}^{\alpha'} e_{\alpha'}) m_{2}(X_{2}^{\beta} f_{\beta}, Y_{2}^{\beta'} f_{\beta'})$$

$$= m_{1}(X_{1}, Y_{1}) m_{2}(X_{2}, Y_{2}).$$

G. Moschidis25 Sep. 2024

On the other hand, the uniqueness of m can be readily shown as follows: Let \tilde{m} be another symmetric bilinear form satisfying

$$\tilde{m}(X_1 \otimes X_2, Y_1 \otimes Y_2) = m_1(X_1, Y_1) \\ m_2(X_2, Y_2) = m(X_1 \otimes X_2, Y_1 \otimes Y_2) \quad \text{for all} \quad X_1, Y_1 \in V_1 \text{ and } X_2, Y_2 \in V_2$$

and let us consider the difference $M=m-\tilde{m}$. Then, the symmetric bilinear form M satisfies

$$M(e_{\alpha} \otimes f_{\beta}, e_{\alpha'} \otimes f_{\beta'}) = m_1(e_{\alpha}, e_{\alpha'}) m_2(f_{\beta}, f_{\beta'}) - m_1(e_{\alpha}, e_{\alpha'}) m_2(f_{\beta}, f_{\beta'}) = 0$$

for all $\alpha, \alpha', \beta, \beta'$; thus, since every element in $V_1 \otimes V_2$ can be written as a linear combination of tensors of the form $e_{\alpha} \otimes f_{\beta}$, we infer that $M \equiv 0$.

(b) We will first show that the two conditions indeed fix a unique symmetric bilinear form m on $\otimes^k V \otimes^l V^*$ for any $k, l \geqslant 0$. Arguing inductively on successive tensor products using part (a) of this exercise, it suffices to show that a unique such m is fixed for k = 0, l = 1, i.e. for V^* , by the condition that

$$m(X_{\flat}, Y_{\flat}) = m(X, Y) \quad \text{for all } X, Y \in V.$$
 (1)

Note that, since m is assumed to be non-degenerate, for any $\omega \in V^*$ there exists a unique $\omega^{\sharp} \in V$ such that $\omega = m(\omega^{\sharp}, \cdot)$, i.e. $\omega = (\omega^{\sharp})_{\flat}$. Thus, if we extend m on V^* by

$$m(\omega_1, \omega_2) \doteq m(\omega_1^{\sharp}, \omega_2^{\sharp})$$

(note that the above expression is manifestly symmetric and bilinear in ω_1, ω_2), then (1) is satisfied.

As in part (a), let $\{e_{\alpha}\}_{\alpha=1}^{\dim V}$ be a basis of V and $\{e_{*}^{\alpha}\}_{\alpha=1}^{\dim V}$ be the corresponding dual basis of V^{*} . Let us denote with $m_{\alpha\beta} \doteq m(e_{\alpha}, e_{\beta})$ the components of m with respect to the basis $\{e_{\alpha}\}_{\alpha=1}^{\dim V}$ of V and with $m^{\alpha\beta} \doteq m(e_{*}^{\alpha}, e_{*}^{\beta})$ the corresponding components of m with respect to the basis $\{e_{\alpha}^{\alpha}\}_{\alpha=1}^{\dim V}$ of V^{*} . Then, the musical isomorphism $X \to X_{\flat} = m(X, \cdot)$ takes the form

$$(X_{\flat})_{\alpha} = m_{\alpha\beta} X^{\beta},$$

which implies in particular (in view of the fact that $(e_{\alpha})^{\beta} = \delta_{\alpha}^{\beta}$)

$$\left((e_{\gamma})_{\flat} \right)_{\alpha} = m_{\gamma\alpha}.$$

Our condition $m(X_{\flat}, Y_{\flat}) = m(X, Y)$ for the extension of m to V^* then yields for any e_{α}, e_{β} :

$$m((e_{\alpha})_{\flat},(e_{\beta})_{\flat}) = m(e_{\alpha},e_{\beta}) \Leftrightarrow m^{\gamma\delta}(e_{\alpha})_{\flat})_{\gamma},(e_{\beta})_{\flat})_{\delta} = m_{\alpha\beta} \Leftrightarrow m^{\gamma\delta}m_{\gamma\alpha}m_{\delta\beta} = m_{\alpha\beta},$$

i.e. the matrix $[m^{\alpha\beta}]$ is the *inverse* of $[m_{\alpha\beta}]$. In particular, m is a non-degenerate inner product on V^* (since its matrix of coefficients is invertible).

Arguing inductively using part (a), we infer that m admits a unique extension with the required property on $\otimes^k V \otimes^l V^*$ for any $k, l \geqslant 0$. An expression for m with respect to the coordinate basis $\left\{e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_k} \otimes e_*^{\beta_1} \otimes \cdots \otimes e_*^{\beta_l}\right\}_{\alpha_1,\ldots,\beta_1,\ldots=1}^{\dim V}$ of $\otimes^k V \otimes^l V^*$ can be readily obtained using our condition on the factorization of $m(\cdot,\cdot)$ when acting on tensors of rank 1: If we denote with

$$m_{\alpha_1...a_la'_1...a'_l}^{\beta_1...\beta_k\beta'_1...\beta'_k} = m(e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_k} \otimes e_*^{\beta_1} \otimes \cdots \otimes e_*^{\beta_l}, e_{\alpha'_1} \otimes \cdots \otimes e_{\alpha'_k} \otimes e_*^{\beta'_1} \otimes \cdots \otimes e_*^{\beta'_l})$$

G. Moschidis 25 Sep. 2024

the coefficients of the extension m with respect to the above basis, we calculate:

$$\begin{split} m_{\alpha_{1}\dots a_{l}a'_{1}\dots a'_{l}}^{\beta_{1}\dots\beta_{k}'\beta'_{1}\dots\beta'_{k}} &= m \left(e_{\alpha_{1}}\otimes \cdots \otimes e_{\alpha_{k}}\otimes e_{*}^{\beta_{1}}\otimes \cdots \otimes e_{*}^{\beta_{l}}, \ e_{\alpha'_{1}}\otimes \cdots \otimes e_{\alpha'_{k}}\otimes e_{*}^{\beta'_{1}}\otimes \cdots \otimes e_{*}^{\beta'_{l}}\right) \\ &= m (e_{\alpha_{1}}, e_{\alpha'_{1}})\dots m (e_{\alpha_{k}}, e_{\alpha'_{k}}) m (e_{*}^{\beta_{1}}, e_{*}^{\beta'_{1}}) \dots m (e_{*}^{\beta_{l}}, e_{*}^{\beta'_{l}}) \\ &= m_{\alpha_{1}\alpha'_{1}}\dots m_{\alpha_{k}\alpha'_{k}} m^{\beta_{1}\beta'_{1}}\dots m^{\beta_{l}\beta'_{l}}. \end{split}$$

The fact that m on $\otimes^k V \otimes^l V^*$ is non-degenerate follows readily from the fact that the corresponding inner products on V and V^* are non-degenerate: Let $X \in \otimes^k V \otimes^l V^*$ be such that

$$m(X,Y) = 0$$
 for all $Y \in \otimes^k V \otimes^l V^*$.

In particular, expanding $X = X_{\beta_1...\beta_l}^{\alpha_1...\alpha_k} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_k} \otimes e_*^{\beta_1} \otimes \cdots \otimes e_*^{\beta_l}$, we obtain for $Y = e_{\alpha'_1} \otimes \cdots \otimes e_{\alpha'_k} \otimes e_*^{\beta'_1} \otimes \cdots \otimes e_*^{\beta'_l}$

$$m(X, e_{\alpha'_1} \otimes \cdots \otimes e_{\alpha'_k} \otimes e_*^{\beta'_1} \otimes \cdots \otimes e_*^{\beta'_l}) = 0$$

$$\Rightarrow X_{\beta_1 \dots \beta_l}^{\alpha_1 \dots \alpha_k} m_{\alpha_1 \alpha'_1} \dots m_{\alpha_k \alpha'_k} m^{\beta_1 \beta'_1} \dots m^{\beta_l \beta'_l} = 0 \quad \text{for all } \alpha'_1, \dots \alpha'_k, \beta'_1, \dots \beta'_l \in \{1, \dots, \dim V\}.$$

Since the matrices $[m_{\alpha\alpha'}]$ and $[m^{\beta\beta'}]$ are invertible, we infer from the above (for instance by multiplying with $m^{\alpha'_1\gamma_1} \dots m^{\alpha'_k\gamma_k} m_{\beta'_1\delta_1} \dots m_{\beta'_i,\delta_l}$) that

$$X_{\delta_1...\delta_l}^{\gamma_1...\gamma_k} = 0 \quad \text{for all } \gamma_1, \ldots, \gamma_k, \delta_1, \ldots, \delta_l \in \{1, \text{dim}V\},$$

i.e. that X = 0.

(c) In the case when m is a positive definite inner product on V, let us assume that $\{e_{\alpha}\}_{\alpha=1}^{\dim V}$ is an $\operatorname{orthonormal}$ basis of V, so that $m_{\alpha\beta}=\delta_{\alpha\beta}$. In that case, the dual basis $\{e_{*}^{\alpha}\}_{\alpha=1}^{\dim V^{*}}$ of V^{*} is also orthonormal (since $m^{\alpha\beta}=[m_{\alpha\beta}]^{-1}=\delta_{\alpha\beta}$). Hence, for any $X\in\otimes^{k}V\otimes^{l}V^{*}$, we compute

$$m(X,X) = m_{\alpha_1\alpha'_1} \dots m_{\alpha_k\alpha'_k} m^{\beta_1\beta'_1} \dots m^{\beta_l\beta'_l} X_{\beta_1\dots\beta_l}^{\alpha_1\dots\alpha_k} X_{\beta'_1\dots\beta'_l}^{\alpha'_1\dots\alpha'_k} = \sum_{\alpha_1,\dots,\alpha_k,\beta_1,\dots,\beta_l=1}^{\dim V} (X_{\beta_1\dots\beta_l}^{\alpha_1\dots\alpha_k})^2,$$

so the extended inner product on $\otimes^k V \otimes^l V^*$ is also positive definite.

In the case when (V, m) is a Lorentzian inner product space, let T be a timelike vector of V and X a (non-zero) spacelike vector with $T \perp X$. Then, it is easy to verify that $T \otimes X$ and $X \otimes T$ are linearly independent (2, 0) tensors and, moreover, any tensor of the form

$$V = \lambda_1 T \otimes X + \lambda_2 X \otimes T, \quad (\lambda_1, \lambda_2) \in \mathbb{R}^2 \setminus 0$$

satisfies

$$m(V,V) = \lambda_1^2 m(T \otimes X, T \otimes X) + 2\lambda_1 \lambda_2 m(T \otimes X, X \otimes T) + \lambda_2^2 m(X \otimes T, X \otimes T)$$

= $\lambda_1^2 m(T,T) m(X,X) + 2\lambda_1 \lambda_2 m(T,X) m(X,T) + \lambda_2^2 m(X,X) m(T,T)$
= $(\lambda_1^2 + \lambda_2^2) m(T,T) m(X,X) < 0$.

Hence, $(\otimes^2 V, m)$ is not a Lorentzian inner product space, since m restricts to a negative definite inner product on a 2-dimensional subspace of $\otimes^2 V$.

G. Moschidis 25 Sep. 2024

- **3.2** Let \mathcal{M}^n be a smooth manifold and let $\omega : \Gamma(\mathcal{M}) \to C^{\infty}(\mathcal{M})$ be $C^{\infty}(\mathcal{M})$ -linear functional. We will show that ω is in fact an 1-form on \mathcal{M} , i.e. if $Y \in \Gamma(\mathcal{M})$ then, for all $p \in \mathcal{M}$, $\omega(Y)|_p$ depends only on $Y|_p$.
 - (a) Let \mathcal{U} be an open neighborhood of p covered by a coordinate chart (x^1, \ldots, x^n) . Show that there exists an open neighborhood \mathcal{V} of p contained inside \mathcal{U} and smooth vector fields $\{X_i\}_{i=1}^n$ on \mathcal{M} such that $X_i = \frac{\partial}{\partial x^i}$ on \mathcal{V} .
 - (b) Show that if $Y|_p = 0$, then there exists a finite number of vector fields $\{V_k\}_k$ such that

$$Y = \sum_{k} f_k V_k,$$

where the functions $f_k \in C^{\infty}(\mathcal{M})$ satisfy $f_k(p) = 0$. Deduce that $\omega(Y)|_p = 0$ and, more generally, $\omega(Y)|_p$ depends only on $Y|_p$.

The same argument should also work for more general $C^{\infty}(\mathcal{M})$ -multilinear maps $T: \Gamma^*(\mathcal{M}) \times \cdots \times \Gamma^*(\mathcal{M}) \times \Gamma(\mathcal{M}) \times \cdots \times \Gamma(\mathcal{M}) \to C^{\infty}(\mathcal{M})$.

Solution. (a) Let $\phi: \mathcal{U} \to \mathbb{R}^n$ be a local coordinate chart defined on a neighborhood \mathcal{U} of p and let (x^1, \ldots, x^n) be the associated coordinate functions. Since $\phi(\mathcal{U})$ is an open subset of \mathbb{R}^n , there exists a radius r > 0 so that the Euclidean ball $B_{3r}(\phi(p))$ of radius 3r centered at $\phi(p)$ is entirely contained in $\phi(\mathcal{U})$. Let $\chi: \mathbb{R}^n \to \mathbb{R}$ be a smooth function so that

$$\chi \equiv 1$$
 on $B_r(\phi(p))$ and $\chi \equiv 0$ on $\mathbb{R}^n \setminus B_{2r}(\phi(p))$.

Let us set $\mathcal{V}_r = \phi^{-1}(B_r(\phi(p)))$, $\mathcal{V}_{2r} = \phi^{-1}(B_{2r}(\phi(p)))$ and $\mathcal{V}_{3r} = \phi^{-1}(B_{3r}(\phi(p)))$ (see Figure 1). Notice that, since ϕ is a homeomorphism, these are open subsets of \mathcal{M} , satisfying

$$p \in \mathcal{V}_r \subset \mathcal{V}_{2r} \subset \mathcal{V}_{3r}$$
.

Moreover, since $\operatorname{clos}(B_{2r}(\phi(p)))$ is a compact subset of $\phi(\mathcal{U})$ (since it is strictly contained inside $B_{3r}(\phi(p)) \subset \phi(\mathcal{U})$) and $\phi^{-1}: \phi(\mathcal{U}) \to \mathcal{U}$ is a homeomorphism, we know that $\operatorname{clos}(B_{2r}(\phi(p)))$ is a compact (and, hence, closed) subset of \mathcal{U} . Since \mathcal{U} is open, this implies in particular that

$$\partial \mathcal{U} \cap \operatorname{clos}(B_{2r}(\phi(p))) = \emptyset.$$
 (2)

Let us define the function $\psi: \mathcal{M} \to \mathbb{R}$ by the relation

$$\psi(q) = \begin{cases} \chi \circ \phi(q), & \text{if } q \in \mathcal{U}, \\ 0, & \text{if } q \in \mathcal{M} \setminus \mathcal{U}. \end{cases}$$

Note that the support of ψ is contained in the set \mathcal{V}_{2r} and $\psi \equiv 1$ on \mathcal{V}_r . We will now show that ψ is a smooth function on \mathcal{M} . The definition of ψ implies that it is automatically smooth in the open sets \mathcal{U} and int $(\mathcal{M} \setminus \mathcal{U})$; thus, we only have to check its behaviour at $\partial \mathcal{U}$. It will follow that

G. Moschidis 25 Sep. 2024

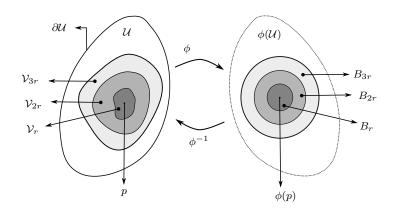


Figure 1: Schematic depiction of the subsets \mathcal{V}_r , \mathcal{V}_{2r} , $\mathcal{V}_{3r} \subset \mathcal{U}$ and $B_r(\phi(p))$, $B_{2r}(\phi(p))$, $B_{3r}(\phi(p)) \subset \mathbb{R}^n$. Note that the function ψ is supported in \mathcal{V}_{2r} and $\psi \equiv 1$ on \mathcal{V}_r .

 $\psi \in C^{\infty}(\mathcal{M})$ if the set $\mathcal{Z} = \{q \in \mathcal{M} : \psi(q) = 0\}$ contains an open neighborhood of $\partial \mathcal{U}$. Indeed, since ψ is supported in V_{2r} , the set \mathcal{Z} contains the open set $\mathcal{W} = \mathcal{M} \setminus \operatorname{clos}(V_{2r})$ and, in view of (2),

$$\partial \mathcal{U} \subset \mathcal{W}$$
.

Having defined the smooth cut-off function $\psi : \mathcal{M} \to \mathbb{R}$ as above, let us define the vector fields X_i (i = 1, ..., n) on \mathcal{M} as follows:

$$(X_i)|_q = \begin{cases} \psi(q) \frac{\partial}{\partial x^i}, & \text{if } q \in \mathcal{U}, \\ 0, & \text{if } q \in \mathcal{M} \setminus \mathcal{U}. \end{cases}$$

The vector fields X_i are indeed smooth for the same reason that ψ is smooth: They are trivially smooth on \mathcal{U} and $\operatorname{int}(\mathcal{M} \setminus \mathcal{U})$ and, since ψ vanishes on an open neighborhood of $\partial \mathcal{U}$, they are equal to the zero vector field in a neighborhood of $\partial \mathcal{U}$ (and hence they are also smooth at $\partial \mathcal{U}$). Moreover, since $\psi = 1$ on \mathcal{V}_r , we have

$$X_i = \frac{\partial}{\partial x^i}$$
 on the neighborhood \mathcal{V}_r of p .

(b) Let $Y \in \Gamma(\mathcal{M})$ be such that $Y|_p = 0$. Note that, inside the open neighborhood \mathcal{U} of p covered by the coordinates (x^1, \ldots, x^n) , we can easily write Y as a sum of vector fields with coefficients vanishing at p, since

$$Y = Y^i \frac{\partial}{\partial x^i}$$

and $Y^1(p) = \cdots = Y^n(p) = 0$ since $Y|_p = 0$. The challenge is to obtain a similar decomposition which is valid on the whole of \mathcal{M} (where $\frac{\partial}{\partial x^i}$ is not well defined). To this end, we will use the cut-off function ψ and the vector fields X_i from part (b) of the exercise.

Let us first decompose (trivially)

$$Y = \psi^2 Y + (1 - \psi^2) Y. \tag{3}$$

G. Moschidis 25 Sep. 2024

If Y^i are the components of the vector field Y in the coordinate system (x^1, \ldots, x^n) on \mathcal{U} , then the vector field ψY can be expressed as

$$\psi(q)Y|_q = \psi(q)Y^i(q)\frac{\partial}{\partial x^i} = Y^i(q)X_i|_q \text{ for all } q \in \mathcal{U}.$$

Therefore, we have

$$\psi^{2}(q)Y|_{q} = (\psi Y^{i})(q) \cdot X_{i}|_{q} \text{ for all } q \in \mathcal{U}.$$
(4)

Notice that, in the above expression, the vector fields $\psi^2 Y$ and X_i are defined on the whole of the manifold \mathcal{M} , but the functions ψY^i are only defined on \mathcal{U} (covered by the coordinate system (x^1,\ldots,x^n)). However, for each $i=1,ldots,n,\,\psi Y^i$ vanishes in an open neighborhood of $\partial \mathcal{U}$ and hence (as in the case of ψ) it can be extended as a smooth function $h^i \in C^{\infty}(\mathcal{M})$ so that

$$h^{i}(q) = \{ \psi(q)Y^{i}(q), \text{ if } q \in \mathcal{U}, 0, \text{ if } q \in \mathcal{M} \setminus \mathcal{U}.$$

Then, since the vector field $\psi^2 Y$ satisfies (4) on \mathcal{U} and vanishes identically on $\mathcal{M} \setminus \mathcal{U}$, we have

$$\psi^2 Y = h^i X_i$$
 everywhere on \mathcal{M} .

Returning to (3), we have

$$Y = h^{i} X_{i} + (1 - \psi^{2}) Y.$$

Notice that, on the right hand side, the coefficient of each vector field vanishes at p:

- For i = 1, ..., n, $h^i(p) = Y^i(p) = 0$ since we assumed that $Y|_p = 0$.
- $(1 \psi^2)(p) = 0$ since $\psi(p) = 1$.

Thus, we succeeded to write

$$Y = \sum_{k} f_k V_k$$

for $f_k \in C^{\infty}(\mathcal{M})$ and $V_k \in \Gamma(\mathcal{M})$ such that $f_k(p) = 0$.

In view of our assumption that $\omega(\cdot)$ is $C^{\infty}(\mathcal{M})$ in its argument, we therefore have:

$$(\omega(Y))(p) = (\omega(\sum_{k} f_k V_k))(p) = \sum_{k} f_k(p)(\omega(V_k))(p) = 0.$$

By linearity, we also deduce that if $Y_1, Y_2 \in \Gamma(\mathcal{M})$ satisfy $Y_1|_p = Y_2|_p$, then

$$(\omega(Y_1))(p) - (\omega(Y_2))(p) = (\omega(Y_1 - Y_2))(p) = 0.$$

3.3 Let \mathcal{M}^n be a smooth manifold and let (x^1, \ldots, x^n) a local system of coordinates around $p \in \mathcal{M}$. Let also $S \in \otimes^k T_p \mathcal{M} \otimes^l T_p^* \mathcal{M}$ be a tensor of type (k, l) at p and let $S^{i_1 i_2 \dots i_k}_{i_1 j_2 \dots j_l}$ be its corresponding components. We will define the *contraction* $\operatorname{tr}(S)$ to be the tensor

$$\operatorname{tr}(S) = S^{\alpha i_2 \dots i_k} \underset{\alpha j_2 \dots j_l}{\partial} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{i_2} \otimes \dots \otimes dx^{i_l},$$

G. Moschidis 25 Sep. 2024

i.e. the components of $\operatorname{tr}(S)$ in the (x^1,\ldots,x^n) coordinates are simply the components of S after summing over the first covariant and contravariant indices. Show that $\operatorname{tr}(S)$ is well-defined independently of the choice of coordinate system, i.e. show that if (y^1,\ldots,y^n) is a different coordinate system around p and $\tilde{S}^{i_1i_2\ldots i_k}_{j_1j_2\ldots j_l}$ are the components of S with respect to these coordinates, then

$$S^{\alpha i_2 \dots i_k}{}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{i_2} \otimes \dots \otimes dx^{i_l}$$

$$= \tilde{S}^{\alpha i_2 \dots i_k}{}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial y^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial y^{i_k}} \otimes dy^{i_2} \otimes \dots \otimes dy^{i_l}.$$

Solution. Let $S^{i_1...i_k}_{j_1...j_l}$ and $\tilde{S}^{i_1...i_k}_{j_1...j_l}$ be the components of S in the (x^1,\ldots,x^n) and (y^1,\ldots,y^n) coordinate systems, respectively. The two sets of coordinate tangent vectors and cotangent vectors are related by

$$\frac{\partial}{\partial y^i} = \frac{\partial x^a}{\partial y^i}$$
 and $dy^i = \frac{\partial y^i}{\partial x^a} dx^a$,

while the relation between the two sets of components for S is given by the usual transformation law for tensors, i.e.

$$\tilde{S}^{i_1\dots i_k}_{j_1\dots j_l} = S^{a_1\dots a_k}_{b_1\dots b_l} \frac{\partial y^{i_1}}{\partial x^{a_1}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \frac{\partial x^{b_1}}{\partial y^{j_1}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}}.$$
 (5)

In the above, $\frac{\partial y^i}{\partial x^a}$ denotes the Jacobian matrix of $y=(y^1,\ldots,y^n)$ as a function of $x=(x^1,\ldots,x^1)$ (see the 1^{st} Exercise Series), while $\frac{\partial x^a}{\partial y^i}$ denotes the Jacobian of the inverse function x=x(y). Recall that, for any diffeomorphism $\Phi:\Omega\subset\mathbb{R}^n\to\Omega'\subset\mathbb{R}^n$, the Jacobian matrix $\left[D(\Phi^{-1})\right]$ of the inverse function Φ^{-1} satisfies:

$$\left[D(\Phi^{-1})\right]\left(\Phi(z)\right) = \left[D(\Phi^{-1})\right]^{-1}\!(z) \quad \text{for all } z \in \Omega.$$

Therefore, as we've seen in class, the matrices $\left[\frac{\partial y^i}{\partial x^a}\right]$ and $\left[\frac{\partial x^a}{\partial y^i}\right]$ evaluated at the same point p in the common domain of definition of the coordinate charts (x^1,\ldots,x^n) and (y^1,\ldots,y^n) are the inverse of one another, i.e.

$$\frac{\partial y^i}{\partial x^a} \cdot \frac{\partial x^a}{\partial y^j} = \delta^i_j \quad \text{and} \quad \frac{\partial x^a}{\partial y^i} \cdot \frac{\partial y^i}{\partial x^b} = \delta^a_b. \tag{6}$$

In order for the contraction tr(S) to be well-defined independently of the coordinate system, we need to show that

$$S^{\alpha i_2 \dots i_k}{}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{i_2} \otimes \dots \otimes dx^{i_l}$$

$$= \tilde{S}^{\alpha i_2 \dots i_k}{}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial y^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial y^{i_k}} \otimes dy^{i_2} \otimes \dots \otimes dy^{i_l},$$

which is the same as saying that the components of tr(S) transform under changes of coordinates like a tensor of type (k-1, l-1), i.e.:

$$\operatorname{tr}(\tilde{S})^{i_2 \dots i_k}_{j_2 \dots j_l} = \operatorname{tr}(\tilde{S})^{a_2 \dots a_k}_{b_2 \dots b_l} \frac{\partial y^{i_2}}{\partial x^{a_2}} \dots \frac{\partial y^{i_k}}{\partial x^{a_k}} \frac{\partial x^{b_2}}{\partial y^{j_2}} \dots \frac{\partial x^{b_l}}{\partial y^{j_l}}.$$
 (7)

G. Moschidis 25 Sep. 2024

In order to show (7), we will calculate $\operatorname{tr}(\tilde{S})$ using the formula (5):

$$\operatorname{tr}(\tilde{S})^{i_{2}\dots i_{k}}{}_{j_{2}\dots j_{l}} = \tilde{S}^{\alpha i_{2}\dots i_{k}}{}_{\alpha j_{2}\dots j_{l}}$$

$$= S^{a_{1}\dots a_{k}}{}_{b_{1}b_{2}\dots b_{l}} \frac{\partial y^{\alpha}}{\partial x^{a_{1}}} \cdot \frac{\partial y^{i_{2}}}{\partial x^{a_{2}}} \dots \frac{\partial y^{i_{k}}}{\partial x^{a_{k}}} \cdot \frac{\partial x^{b_{1}}}{\partial y^{\alpha}} \cdot \frac{\partial x^{b_{2}}}{\partial y^{j_{2}}} \dots \frac{\partial x^{b_{l}}}{\partial y^{j_{l}}}$$

$$= S^{a_{1}a_{2}\dots a_{k}}{}_{b_{1}b_{2}\dots b_{l}} \left(\frac{\partial y^{\alpha}}{\partial x^{a_{1}}} \cdot \frac{\partial x^{b_{1}}}{\partial y^{\alpha}} \right) \cdot \frac{\partial y^{i_{2}}}{\partial x^{a_{2}}} \dots \frac{\partial y^{i_{k}}}{\partial x^{a_{k}}} \cdot \frac{\partial x^{b_{2}}}{\partial y^{j_{2}}} \dots \frac{\partial x^{b_{l}}}{\partial y^{j_{l}}}$$

$$\stackrel{(6)}{=} S^{a_{1}a_{2}\dots a_{k}}{}_{b_{1}b_{2}\dots b_{l}} \cdot \delta^{b_{1}}_{a_{1}} \cdot \frac{\partial y^{i_{2}}}{\partial x^{a_{2}}} \dots \frac{\partial y^{i_{k}}}{\partial x^{a_{k}}} \cdot \frac{\partial x^{b_{2}}}{\partial y^{j_{2}}} \dots \frac{\partial x^{b_{l}}}{\partial y^{j_{l}}}$$

$$= S^{\alpha a_{2}\dots a_{k}}{}_{a_{b_{2}\dots b_{l}}} \cdot \frac{\partial y^{i_{2}}}{\partial x^{a_{2}}} \dots \frac{\partial y^{i_{k}}}{\partial x^{a_{k}}} \cdot \frac{\partial x^{b_{2}}}{\partial y^{j_{2}}} \dots \frac{\partial x^{b_{l}}}{\partial y^{j_{l}}}$$

$$= \operatorname{tr}(S)^{a_{2}\dots a_{k}}{}_{b_{2}\dots b_{l}} \frac{\partial y^{i_{2}}}{\partial x^{a_{2}}} \dots \frac{\partial y^{i_{k}}}{\partial x^{a_{k}}} \frac{\partial x^{b_{2}}}{\partial y^{j_{2}}} \dots \frac{\partial x^{b_{l}}}{\partial y^{j_{l}}},$$

i.e. (7) holds.

3.4 Let (\mathcal{M}, g) be a smooth Lorentzian manifold which is *not* time orientable. Prove that there exists a Lorentzian manifold (\mathcal{M}', g') which is time orientable and a map $F: \mathcal{M}' \to \mathcal{M}$ which is 2-1 and a local isometry. Such a space is called a *time-orientable cover*. (*Hint: You might want to consider the causal line seed field* $\{X, -X\}$ over \mathcal{M} constructed in Exercise 2.4 last week, and study its properties a submanifold of $T\mathcal{M}$.)

Solution. We have seen in class that a Lorentzian manifold (\mathcal{M}, g) is time orientable if and only if there exists a causal vector field $X \in \Gamma(\mathcal{M})$. We also saw in Exercise 2.4 that any Lorentzian manifold (\mathcal{M}, g) (whether time-orientable or not) admits a smooth causal line field, that is to say, an assignment of a pair of opposite tangent vectors $p \to \mathscr{S}_p = \{X_p, -X_p\} \subset T_p\mathcal{M} \setminus 0$ for all $p \in \mathcal{M}$ such that, for each $p \in \mathcal{M}$:

- 1. The vectors $X_p, -X_p \in T_p \mathcal{M} \setminus 0$ are causal with respect to g_p ,
- 2. There exists an open neighborhood \mathcal{U}_p and a smooth vector field Y on \mathcal{U} such that, for all $q \in \mathcal{U}$, $\mathcal{S}_q = \{Y_q, -Y_q\}$ (note that such a vector field Y cannot exist globally on \mathcal{M} if (\mathcal{M}, g) is not time orientable).

Let us consider the subset \mathscr{S} of $T\mathcal{M}$ defined by

$$\mathscr{S} = \bigcup_{p \in \mathcal{M}} \mathscr{S}_p \subset \bigcup_{p \in \mathcal{M}} T_p \mathcal{M} = T \mathcal{M}.$$

We will first show that \mathscr{S} is a smooth submanifold of $T\mathcal{M}$. To this end, it suffices to show that, for any $p \in \mathcal{M}$, there exists an open neighborhood \mathcal{V} of p such that $\pi^{-1}(\mathcal{V}) \cap \mathscr{S}$ is a submanifold of $T\mathcal{M}$; recall that $\pi: T\mathcal{M} \to \mathcal{M}$ is the base projection map

$$\pi(q,\xi) = q$$
 for any $q \in \mathcal{M}, \xi \in T_q \mathcal{M}$.

G. Moschidis 25 Sep. 2024

For any point $p \in \mathcal{M}$, property 2 above says that there exists an open neighborhood \mathcal{U} of p and a vector field Y on \mathcal{U} such that, if we view Y as a map from \mathcal{U} to $T\mathcal{U}$ (sending $p \to Y_p \in T_p\mathcal{M}$), then $\mathscr{S}|_{\mathcal{U}} = \mathscr{S} \cap \pi^{-1}(\mathcal{U})$ is just the disjoint union of the images of Y and -Y, i.e.

$$\mathscr{S}|_{\mathcal{U}} = Y(\mathcal{U}) \coprod (-Y(\mathcal{U})) \doteq \mathscr{S}_{+}(\mathcal{U}) \coprod \mathscr{S}_{-}(\mathcal{U}).$$

Given any local coordinate chart $\Phi: \mathcal{V} \to \mathbb{R}^n$ on an open set $\mathcal{V} \subset \mathcal{U}$ with associated coordinates (x^1, \ldots, x^n) , we can define a coordinate chart $\tilde{\Phi}: T\mathcal{V} \to \mathbb{R}^{2n}$ with associated coordinates $(x^1, \ldots, x^n; v^1, \ldots, v^n)$ so that, for any $p \in \mathcal{V}$ and $\xi \in T_p\mathcal{M}$:

$$(x^1, \dots, x^n; v^1, \dots, v^n)(p, \xi) = (x^1(p), \dots, x^n(p); dx^1|_p(\xi), \dots, dx^n|_p(\xi)).$$

In any such coordinate system $(x^1, \ldots, x^n; v^1, \ldots, v^n)$, the sets $\mathscr{S}_{\pm}(\mathcal{V})$ correspond to the smooth submanifolds of \mathbb{R}^{2n} described by the equations

$$v^{i} = \pm Y^{i}(x^{1}, \dots, x^{n}), \quad i = 1, \dots, n.$$

Thus, \mathscr{S} is a smooth submanifold of $T\mathcal{M}$. Moreover, for \mathcal{V} as above, the maps $Y: \mathcal{V} \to \mathscr{S}_+(\mathcal{V})$ and $-Y: \mathcal{V} \to \mathscr{S}_-(\mathcal{V})$ are diffeomorphisms: They are immersions (since any vector field $Y: \mathcal{V} \to T\mathcal{V}$ is an immersion, as can be explicitly checked in the coordinates fixed above) and they satisfy

$$\pi \circ Y = \mathrm{Id}_{\mathcal{V}}, \quad \pi \circ (-Y) = \mathrm{Id}_{\mathcal{V}}.$$

As a result, the map $\pi: \mathscr{S} \to \mathcal{M}$ is a local diffeomorphism (not a global one, though, since the inverse image of any point of \mathcal{M} contains two points of \mathscr{S}). We can therefore equip \mathscr{S} with the pull-back metric $g' = \pi_* g$ (this is a well-defined Lorentzian metric, since $d\pi: T_w \mathscr{S} \to T_{\pi(w)} \mathcal{M}$ is 1-1 and onto for any $w \in \mathscr{S}$); this, by definition, turns the map $\pi: (\mathscr{S}, g') \to (\mathcal{M}, g)$ into a local isometry.

We will now show that (\mathscr{S}, g') is time-orientable. To this end, it suffices to find a globally defined smooth causal vector field on \mathscr{S} . From our definition of \mathscr{S} , any point $w \in \mathscr{S} \subset T\mathcal{M}$ is of the form (q, ξ) for some $q \in \mathcal{M}$ and $\xi \in T_q \mathcal{M} \setminus 0$ which is causal with respect to g_q . Since $\pi : \mathscr{S} \to \mathcal{M}$, $\pi(q, \xi) = q$, is a local isometry, the differential $d\pi|_{(q,\xi)} : (T_{(q,\xi)}\mathscr{S}, g'|_{(q,\xi)}) \to (T_q \mathcal{M}, g|_q)$ is a linear isometry; thus, we can define the vector field Y' on \mathscr{S} by the relation

$$Y'|_{(q,\xi)} = \left(d\pi|_{(q,\xi)}\right)^{-1}\xi \quad \text{for any } (q,\xi) \in \mathscr{S}. \tag{8}$$

Note that, since $d\pi|_{(q,\xi)}$)⁻¹ is a linear isometry, $Y'|_{(q,\xi)}$ is causal with respect to g' (since ξ is causal with respect to g). Moreover, Y' as defined above is indeed smooth since, for any $w = (q,\xi) \in \mathscr{S}$, there exists an open neighborhood \mathcal{U}' of w in \mathscr{S} such that $\pi: \mathcal{U}' \to \pi(\mathcal{U}')$ is a diffeomorphism and any $w' = (q',\xi') \in \mathcal{U}'$ is of the form $\xi' = Y|_{q'}$ for a smooth vector field Y on $\pi(\mathcal{U}')$ (this is essentially property 2 above); thus, $Y'|_{\mathcal{U}'}$ as defined by (8) is the push-forward of the smooth vector field Y on $\pi(\mathcal{U}') \subset \mathcal{M}$ via the map $Y:\pi(\mathcal{U}') \to \mathcal{U}'$ (viewed as the inverse of $\pi|_{\mathcal{U}'}$) and, therefore, $Y'|_{\mathcal{U}'}$ is smooth.

We have, thus, shown that $\pi: (\mathscr{S}, g') \to (\mathcal{M}, g)$ is a 2-1 map which is a local isometry and that (\mathscr{S}, g') is time-orientable; this construction is carried out irrespectively of whether (\mathcal{M}, g) is

EPFL- Fall 2024 SOLUTIONS: Series 3

Differential Geometry IV: General Relativity

G. Moschidis25 Sep. 2024

time orientable or not. In the case when (\mathcal{M}, g) is time orientable, \mathscr{S} will consist of two components (since the causal line field in this case can be written as the union of two causal vector fields defined everywhere on \mathcal{M}) and π is an isometry when restricted to each of them. If (\mathcal{M}, g) , then \mathscr{S} is connected.